Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0848120100350030129
International Journal of Oral Biology
2010 Volume.35 No. 3 p.129 ~ p.135
Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons
Lee Hae-In

Chun Sang-Woo
Abstract
Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration () in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the , which was inhibited by pretreatment with phenyl-N-tertbuthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced increase was suppressed both in a calcium free solution and after depletion of the intracellular pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red () and capsazepine (). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.
KEYWORD
reactive oxygen species, intracellular calcium concentration, dorsal root ganglion, transient receptor potential channel
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed